domingo, 7 de octubre de 2007

BIENVENIDA


Este blog tiene por finalidad apoyar a los alumnos que estén interesados en estudiar o repasar el tema de Productos Notables y Factorización. En este espacio podrás encontrar un poco de historia del álgebra, algunas definiciones sobre el tema, animaciones, vínculos de interés relacionados con el mismo, comentarios de las personas que visitan el blog y muchas cosas más.





video

CONCEPTOS BÁSICOS DE LOS PRODUCTOS NOTABLES Y FACTORIZACIÓN


Productos y Cocientes notables - Según álgebra Baldor

Productos Notables

Cuadrado de la suma de dos cantidades

El cuadrado de la suma de dos cantidades es igual al cuadrado de la primera cantidad más el doble de la primera cantidad por la segunda más el cuadrado de la segunda cantidad.

Cuadrado de la diferencia de dos cantidades

El cuadrado de la suma de dos cantidades es igual al cuadrado de la primera cantidad menos el doble de la primera cantidad por la segunda más el cuadrado de la segunda cantidad.

Producto de la suma por la diferencia de dos cantidades

El producto de la suma por la diferencia de dos cantidades es igual al cuadrado de la primera cantidad menos el cuadrado de la segunda

Cubo de un binomio

El cubo de la suma de dos cantidades es igual al cubo de la primera cantidad mas el triple del cuadrado de la primera por la segunda mas el triple del cuadrado de la segunda por la primera mas el segundo al cubo.

El cubo de la diferencia de dos cantidades es igual al cubo de la primera cantidad menos el triple del cuadrado de la primera por la segunda mas el triple del cuadrado de la segunda por la primera menos el segundo al cubo.

Cocientes Notables

Cociente de la diferencia de los cuadrados de dos cantidades entre la suma o la diferencia de las cantidades.

La diferencia de los cuadrados de dos cantidades divididas entre la suma de las cantidades es igual a la diferencia de las cantidades.

La diferencia de los cuadrados de dos cantidades entre la diferencia de las cantidades es igual a la suma de las cantidades.

Casos de factorización

Caso 1 - Factor común

Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común, entonces se puede sacar este término como factor común.

Caso 2 - Factor por agrupación de términos

En una expresión de dos, cuatro, seis o un número par de términos es posible asociar por medio de paréntesis de dos en dos o de tres en tres o de cuatro en cuatro de acuerdo al número de términos de la expresión original. Se debe dar que cada uno de estos paréntesis que contiene dos, o tres o mas términos se le pueda sacar un factor común y se debe dar que lo que queda en los paréntesis sea lo mismo para todos los paréntesis o el factor común de todos los paréntesis sea el mismo y este será el factor común.

Caso 3 - Trinomio cuadrado perfecto

Una expresión se denomina trinomio cuadrado perfecto cuando consta de tres términos donde el primero y tercer términos son cuadrados perfectos (tienen raíz cuadrada exacta) y positivos, y el segundo término es el doble producto de sus raíces cuadradas. Se extrae la raíz cuadrada del primer y tercer término y se separan estas raíces por el signo del segundo término. El binomio así formado se eleva al cuadrado.

Caso 4 - Diferencia de cuadrados perfectos

Dos cuadrados que se están restando es una diferencia de cuadrados. Para factorizar esta expresión se extrae la raíz cuadrada de los dos términos y se multiplica la resta de los dos términos por la suma de los dos.

Caso especial: Se puede presentar que uno o los dos términos de la diferencia contenga mas de un término.

Caso especial: Se puede dar una expresión de cuatro términos donde tres de ellos formen un trinomio cuadrado perfecto que al ser factorizado y combinado con el cuarto término se convierta en una diferencia de cuadrados, o pueden ser seis términos que formen dos trinomios cuadrados perfectos y al ser factorizados formen una diferencia de cuadrados.

Caso 5 - Trinomio cuadrado perfecto por adición y sustracción

Algunos trinomios no cumplen las condiciones para ser trinomios cuadrados perfectos, el primer y tercer término tienen raíz cuadrada perfecta pero el término de la mitad no es el doble producto de las dos raíces. Se debe saber cuanto debe ser el doble producto y la cantidad que falte para cuadrar el término de la mitad, esta cantidad se le suma y se le resta al mismo tiempo, de tal forma se armara un trinomio cuadrado y factorizado unido con el último término tendremos una diferencia de cuadrados.

Caso especial: factorar una suma de cuadrados, se suma el término que hace falta para formar un trinomio cuadrado perfecto y al mismo tiempo se resta esta misma cantidad, así tendremos un trinomio cuadrado perfecto enseguida una diferencia de cuadrados.